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Platelet-Activating Factor Receptor
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Platelet-activating factor (PAF) is a pro-inflammatory lipid mediator possessing a
unique 1-O-alkyl glycerophospholipid (GPC) backbone (l-O-alkyl-2-acetyl-sn-glycero-3-
phosphocholin). Cloned PAF receptor, which belongs to the G protein-coupled receptor
superfamily, transduces pleiotropic functions including cell motility, smooth muscle
contraction, and synthesis and release of mediators and cytokines via multiple hetero-
trimeric G proteins. Pharmacological studies have suggested that PAF functions in a
variety of settings including allergy, inflammation, neural functions, reproduction, and
atherosclerosis. Establishment of PAFR"'" mice confirmed that the PAF receptor is re-
sponsible for pro-inflammatory responses, but that its roles in other settings remain to
be clarified.

. Key words: bronchial asthma, endotoxin shock, G protein-coupled receptors, oxidized
phospholipids, platelet-activating factor.

Overview'
Platelet-activating factor (PAF), a structurally unusual

lipid autacoid possessing an intact 1-O-alkyl glycerophos-
pholipid (GPC) backbone (l-O-alkyl-2-acetyl-s7i-glycero-3-
phosphocholin), was originally identified as a pro-inflam-
matory mediator in the late 1970s. Subsequent researches
suggest that PAF, and structurally related GPC oxidatively
fragmented at the sn-2 position, function as mediators in a
variety of settings including atherosclelosis, neural func-
tions and reproduction. Cloned PAF receptor (PAFR) pos-
sesses a typical structure of G protein-coupled receptors
(GPCRs) with seven transmembrane helices, and it pre-
sumably signals through Gaq/11, Gao, and God, and also
GP7. PAFR subtypes have not been identified. PAFR^" mice
apparently grow normally. Their phenotypes revealed that
the cloned PAFR plays major roles in inflammatory re-
sponses including systemic anaphylaxis, but its roles in
other biological functions should be clarified by further
studies.

PAF, its synthesis, degradation, and cell-surface ex-
pression

Platelet-activating factor (PAF), initially recognized as
platelet-stimulating activity from FeRI-engaged basophils
(1), was structurally identified as l-O-alkyl-2-acetyl-sn-
glycero-3-phosphocholin in the late 1970s (2, 3) (Fig. 1). In
contrast to unsaturated fatty acid-derived major autacoid
species [e.g., prostanoids (PGs) and leukotriens (LTs)], PAF
is unusual in its intact glycerophospholipid structure. The
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ether-bonded fatty alcohol with C16-18 chain length at the
sn-1 position of the glycerol backbone, an acetyl residue at
sn-2, and phosphocholine at sn-3 are all required for opti-
mal PAF activity (reviewed in Ref. 4).

Biological activity of PAF does not seem to be confined to
pro-inflammatory functions. Recent works suggest its in-
volvement in a variety of settings, including reproduction,
central nervous system functions, and circulatory system
disturbance such as atherosclerosis (reviewed in Refs. 5-7).

The majority of PAF is synthesized from glycerophospho-
cholins (GPCs) with 1-O-alkyl moieties (Fig. 2). 1-O-Alkyl-
GPCs are enriched with arachidonic acid at the sn-2 posi-
tion (4). Upon cell activation, cytoplasmic phospholipase Aj
(cPLAj) (8) simultaneously liberates arachidonic acid and
Lyso-PAF, the direct precursor of PAF, providing the basis
for interrelated synthesis of eicosanoids and PAF. PAF is
finally synthesized by the action of acetyl CoA-lysoPAF
acetyl transferase. This enzyme has not been purified, and
its nature remains to be determined. The involvement of a
cPLAj-dependent "remodeling" pathway in bulk PAF syn-
thesis in inflammatory cells was confirmed in cPLAj"7" mice
(9, 10). Another metabolic pathway dependent on phospho-
choline transfer from CDP-choline to l-O-alkyl-2-acetyl-
glycerol was also reported ("de novo" pathway, reviewed in
Ref. 4), but its significance remains to be clarified.

PAF is hydrolyzed at the sn-2 position by PAF acetyl hy-
drolases (PAF-AH) to yield lyso-PAF. There exist at least
three types of PAF-AH: two intracellular enzymes (tissue
types I and II) and one secreted one (plasma type). Tissue
type I is a heterotrimer containing the product of the LIS1
gene, which is genetically associated with a congenital
brain agyria, Miller-Dieker lissencephaly (11). Tissue type
II and plasma type PAF-AH are structurally related mono-
meric enzymes (12). Both possess activities hydrolyzing oxi-
dized fatty acyl residues and acetyl residues from the sn-2
position of GPCs, and LCAT-like acetyl transferase activity
(13,14).

Besides PAF synthesized via the regulated pathway, oxi-
dized 1-O-acyl GPCs, whose unsaturated fatty acyl resi-
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dues at the sn-2 position are randomly fragmented by ox-
idization, also stimulate PAF receptor (PAFR) (15, 16). The
oxidized GPCs possess hydroperoxy fatty acids of shorten
chain length (C2-C4), resembling the short acetyl moiety
at the sn-2 position of PAF (17, 18). The oxidized GPC spe-
cies are implicated in atherogenesis: GPCs with short oxi-
dized fatty acyl moieties are found in oxidized low-density
lipoprotein (LDL) (18, 19), PAFR is expressed on athero-
sclerotic lesions in humans (20), and intervention of the
PAF-like action with PAF-AH or with PAF antagonists suc-
cessfully suppressed progression of atherosclerosis in model
animals (21, 22).

Lipid autacoid release across the plasma membrane
sometimes requires specific machinery as seen in LTC4

transport via ATP-binding cassette transporter (23). In the
case of PAF synthesized in vascular endothelial cells, its
polar head translocates to the outer surface of the cell via
undefined "flip-flop" mechanisms, with the saturated alkyl
moiety being inserted into outer leaflet of plasma mem-
brane. The cell-associated PAF functions as a juxtacrine
hand stimulating adherent leukocytes (reviewed in Refs. 6
and 24). These characteristics of PAF are reminiscent of
fractalkine, a transmembranous chemokine expressed on
the endothelial surface (25), which induces firm adhesion
and trans-endothelial migration of leukocytes through

O
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CH2-O-(CH2)n-CH3
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Fig. 1. Structure of PAF.

"inside-out" integrin activation. Such short-range PAF sig-
naling may represent mechanisms to avoid its accelerated
conversion to inactive lyso-PAF by high activity of plasma-
type PAF acetyl hydrolase (26).

PAF receptor: structure-function analysis and regu-
lated expression

As suggested by earlier findings that PAF specifically
binds to and stimulates GTPase activity in polymorphonu-
clear leucocyte (PMN) membranes (27), cloned PAF recep-
tors from various species possess a typical structure of G
protein-coupled receptors (GPCRs) with seven transmem-
brane helices (TMs) (28-30) (Fig. 3). To date no other sub-
types have been recognized. Specific binding of PAF or PAF
antagonists has been detected in various cells including
PMNs, platelets, macrophage-lineage cells (M0, Kupffer
cells and microglia), thoracheal epithelium, vascular endo-
thelium, and myometrium (see references in Ref. 5). PAFR
expression in primary T and B lymphocytes is still contro-
versial. PAFR mRNA is widely distributed in PMNs,
spleen, kidney, liver, heart, skeletal muscle, and brain from
various species. In situ hybridization detected PAFR
mRNA in mesangial cells in rat kidney, blood vessels,
smooth muscles, and alveolar wall in human lung, micro-
glia and to a lesser extent in neurons in rat brain (5).

PAFR mutagenesis studies have provided several in-
sights into G protein-coupling, ligand-binding, and activa-
tion states of the receptor (Fig. 3). Overexpression of PAFR
3rd intracellular loop, a putative Gq/11 coupling site in m3
muscarinic Ach receptor (31, 32), exerts dominant negative
effects on PAFR functions (33). Mutagenesis of the amphi-
pathic a helix at the 3rd loop [residues 210-220, IHTLLTR-
PVRQ (rat PAFR); see Fig. 3] disrupted the PAFR-phos-
pholipase C cascade, thereby indicating that the 3rd loop is
involved in G protein-coupling (34). In addition, A230E ex-
change at the C-terminal end of the 3rd loop interrupts

1-O-alkyl-GPC
rOR

Lyso-PAF

Acetyl-CoA-LysoPAF
cetyltransferase

acetyl-CoA

Fig. 2. Synthesis and degradation
of PAF. See text for detail.
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Extracellular Fig. 3. Transmembrane struc-
"ture^of-PAF'-receptbrr Shaded
amino acids indicate the sites of mu-
tagenesis studies. See text for de-
tail.

Intracellular
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Fig. 4. Genome structure of human PAF receptor. Two 5' non-coding exons (exons 2 and 1; the order is inverted for historical reasons)
are spliced to exon 3, the entire coding sequence, yielding two PAFR transcripts. Their expression is regulated by two promoters (promoters 2
and 1). Promoter 2 contains AP-2, TIE (TGFpS-inhibitory element), SP-1 and HRE (hormone responsive element); and promoter 1, NF-KB SP-
1, and T(3RE (TGFp responsive element).

PAFR-G protein-coupling (35). Interestingly, the adjacent
L231R substitution created constitutively active PAFR
with intact PAF responsiveness and higher affinity to PAF
than wild-type PAFR (35). These data suggest that subtle
structural changes at around the 3rd loop partially imitate
an activation state of PAFR. N100A substitution in the 3rd
TM was found to induce another constitutive PAFR activa-
tion with higher affinity to PAF (36). This seemingly
remote effect suggests that G protein activation is denned
in three dimensions as well.

Ishii et al. performed Ala-scanning mutagenesis of trans-
membranous polar amino acids (36). They showed that
extinction of the polarities in the 2nd, 3rd, and 7th TMs
induces higher PAF binding affinities than WT PAFR,
whereas replacement of three His residues close to the
outer surface in the 5th and 7th TMs critically decreased
affinity to PAF (36). They proposed that the three His resi-
dues coordinately bind phosphate of PAF. These findings
are consistent with the idea that ligand-binding pockets in
GPCRs are composed in three dimensions of multiple TMs
through polar and non-polar interactions. In the GPCR
superfamily, D63 in the 2nd TM and N285 and D289 are
well preserved (37) and hypothetically create a negatively
charged binding pocket. This module was once presumed to
create a choline-binding pocket (38). However, mutagenesis
studies showed that these amino acids are not essential for
PAF binding (39). The binding site for the choline residue-of

PAF is still undetermined.
PAFR is post-translationally modified by disulfide bond-

ing at C90-C173 and by A -̂linked glycosylation at N169.
These modifications are required for efficient cell surface
expression of PAFR (40). The Ser and Thr cluster at the C-
terminus is phoshorylated upon PAF binding, and this pro-
cess, presumably catalyzed by G protein-coupled receptor
kinase (GRK)-2, seems crucial for homologous desensitiza-
tion and for facilitated internalization of PAFR (41-A4).
Common and downstream desensitization mechanisms are
also noted in the PAFR system, including phospholipase
Cp3 (PLCp3) phosphorylation by protein kinase C (PKC)
(45) and Gq-mediated proteolysis of inositol 1,4,5-trisphos-
phate (IP3) receptor (46).

PAFR expression seems to be differentially regulated by
two promoters (promoters 1 and 2) flanking two 5'-noncod-
ing exons (exons 1 and 2) (47) (Fig. 4). These noncoding
exons are spliced to an acceptor site on the exon 3 encoding
entire PAFR open reading frame, yielding two PAFR tran-
scripts (transcripts 1 and 2). PAFR transcript 1 is ubiqui-
tously expressed and abundant in PMNs and monocytes.
Transcript 2 is seen in organs including heart, lung, spleen,
and kidney, but its expression is low in PMNs and mono-
cytes (see references in Refs. 5 and 48). Promoter 1 con-
tains consensus sequences for NF-KB and Spl and a TGF-(J
responsive element, and PAFR expression is augmented in
response to phorboh ester and TGF-p (47, 49).-Promoter-2~
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contains a TGF-p inhibitory element and a hormone-re-
sponsive element, and transcript 2 levels are regulated neg-
atively by TGF-p and positively by steroid hormones such
as retinoic acid, triiodothyronine and estradiol (50, 51).

Signal transduction from PAF receptor
Selective PAFR coupling with heterotrimeric G proteins

has been studied through various approaches. PAFR regu-
lates initial GPCR 2nd messengers: it augments inositol
1,4,5-trisphosphate (IP3) synthesis and calcium mobiliza-
tion and suppresses forskolin-stimulated cAMP synthesis
in CHO cells (52). The latter effect, a hallmark of Gai spe-
cies, is completely inhibited by pertussis toxin (PTX) (52).
IP3 synthesis is partially sensitive to PTX in CHO cells and
in RBL mast cells (42, 52), and the PTX-insensitive portion
is abolished when GDP-pS is incorporated into RBL cells,
indicating that both PTX-insensitive and sensitive G pro-
teins regulated this pathway. Recently PTX-insensitive
Gaq was found to reconstitute the PAFR-IP3 axis in COS
cells (53), showing the roles of the Gaq/11 family.

Additional information was obtained from studies focus-
ing on PAFR-induced Erk and p38 MAP kinase activation.
PAFR-mediated Erk activation, and also Erk-dependent
cytosolic phospholipase A2 activation, are largely sensitive
to PTX in CHO cells (52). The Erk pathway is dependent
on Gao expression, and PAFR induces azido-GTP incorpo-
ration into Goa in CHO cells (54). Moreover, expression of a
PTX-insensitive mutant of Gao, but not of Gai2 or 3, ren-
ders the pathway resistant to PTX (54). PAFR-induced p38
MAPK activation is insensitive to PTX in CHO cells and in
PMNs (54, 55). This pathway is attenuated by RGS16 Ga
GAP expression, and a QL mutant of Gal l lacking GTPase
activity overcomes the inhibitory effects in CHO cells (54).
Therefore, it is conceivable that PAFR links to Gaq/11,
Gao, and Gai G proteins. PLCp activation is presumably
transduced mainly by Gaq/11 and partly by Gao, p38 by
Gaq/11, and Erk by Gaq/11, Gao, and also by GP7 depend-
ing on cell types (see below).

Molecular mechanisms of the post-G protein signaling
network that participate in cellular functions, i.e., cell po-
larization, adhesion and motility, gene expression, and
trophic effects, have been the focus of intensive research
(reviewed in Ref. 56) and are beyond the scope of this
review. Noticeable characteristics of the network are that
the post-G protein signaling is highly dependent on cell-
context. For instance, the PAFR-Erk pathway, which proba-
bly regulates cell growth and gene expression including
inflammatory cytokines, is Ras-independent and PKC-de-
pendent in fibroblasts (52, 54), whereas PAFR activates the
Ras-Erk pathway in PMNs, presumably through the Gq-
Ras GRF pathway (56). In addition, PAFR utilizes transac-
tivation of EGF receptor in Erk activation, which is theo-
retically transduced by GP7 and forms part of the Ras
pathway, in epidermal cells (57). The last example indicates
PAFR-transactivation of receptor protein tyrosine kinases
(PTKs) or non-receptor PTKs including Src family kinases
(58), but the underlying mechanisms are still elusive.
PAFR activates MEKl/2-Erk and MEK3 (and presumably
MEK6)-p38 MAP kinases in various cells (55, 59), whereas
c-Jun N-terminal kinase activation by PAF has been noted
solely in primary hippocampal neurons (60). PAFR-medi-
ated PIP3 synthesis, which presumably regulates cell
polarization/motility and cell survival and growth, utilizes

GP7-activatable PI3 kinase 7 in a macrophage cell line (61),
while PAFR signals via p85/pllO PI3Ks in an erythroleu-
kemia cell line (62). PAFR is also reported to regulate other
downstream signaling molecules, including PLD, PLC7,
and other small G proteins, Ral and Rap (63, 64).

Roles of PAF receptor in pathophysiological condi-
tions: insights from PAF receptor-overexpressing,
and PAF receptor7" mice

Through a number of experiments in animal models, and
in several cases in humans, PAF has been implicated in
pathophysiological conditions including allergic asthma,
endotoxin shock, acute pancreatitis and dermal inflamma-
tions such as psoriasis and pruritis (reviewed in Ref. 5).
Recent works suggests the roles of PAFR in atherogenesis
(see above). These proposals are based on PAF-induced
pathological responses, prevention of the pathological con-
ditions by PAFR antagonists or by PAF acetylhydrolases,
and measurement of PAF or PAF-related compounds in
pathological regions. To date, however, PAF antagonists
have not been applied clinically. Although PAF is conceiv-
ably involved in these conditions, it might play modifying
roles in them.

Several reports suggest roles of PAF in implantation of
embryos. Pre-implantation embryos synthesize PAF, and
notably (65), pretreatment of embryos with PAF reportedly
increases implantation rate in in vitro fertilization in
humans (65, 66). PAF fulfils the requirements for retro-
grade messengers in neural synapses in that it is a small
and diffusible molecule produced in CNS (67). Bazan and
colleagues have proposed that hippocanpal LTP, and also
memory function in animals, involves PAF-regulated
events, based on the observations that a PAF antagonist
inhibits LTP in the CA1 region and that in vivo infusion of
an unhydrolizable PAF analog (methylcarbamoyl PAF) into
dorsal hippocampus, amygdala, or entorhinal cortex im-
proved memory functions in male Wistar rats (68, 69).

Creation of PAFR-transgenic (Tg) mice and PAFR-7- mice
have provided insights into several, if not all, of the above-
mentioned possibilities (70, 71). Since the PAFR-Tg con-
struct used in the studies is driven by p-actin promoter, it
should be kept in mind that PAFR transgene expression is
different from that in intrinsic PAFR (70). PAFR-Tg spon-
taneously develops melanocyte tumors (70), suggesting an
direct or indirect melanocyte proliferating potential of
PAFR. PAFR7- mice grow apparently normally. PAFR-Tg
progeny are reproducibly smaller than the wild type when
either male or female PAFR-Tg heterozygotes are mated
with wild-type mice. However, PAFR^ mice exhibited nor-
mal reproductive potential (71). Thus PAFR is not essential
for reproduction, but an augmented (or ectopic) PAF signal
both in embryos and in maternal systems appears to be
disadvantageous for fertilization in mice (70, 71).

In PAFR7" mice, intravenous PAF injection does not
cause hypotension, and PAF challenge fails to induce cal-
cium mobilization in PAFR7- PMNs. Hence, these PAF
functions are entirely ascribed to the cloned PAFR. PAFR-
Tg and PAFR"7- mice display altered behaviors in response
to immunological or inflammatory challenges. PAFR-7" mice
are extremely resistant to antigen-induced systemic ana-
phylaxis, including bradycardia, circulatory shock, and
lung edema (71). PAFR-Tg mice respond more severely to
lipopolysaccharide (LPS)-induced endotoxin shock, while
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PAFR"'" mice respond similarly to wild-type mice (71).
These findings show that PAF plays major roles in type I
(and/or III) allergic anaphylaxis and that it enhances the
severity of endotoxin shock. PAFR-Tg mice show bronchial
hyper-responsiveness to methacholine as well as PAF (70).
PAFR-Tg mice are significantly sensitive to PAF injection
in terms of bronchial constriction, and these effects seem to
be indirectly mediated thromboxane A2 and leukotriene D4
(70). PAFR"'- mice are also more resistant to hydrochloric
acid aspiration-induced lung edema (a model of aspiration
pneumonia) than wild type mice (72).

Apparently contradictory to previous pharmacological
studies (69), PAFR7" mice exhibited normal LTP and
showed no obvious abnormality in excitatory synaptic
transmission in the hippocampal CA1 region (73). These
discrepancies might suggest the existence of PAF receptors
other than the cloned one, or that PAF antagonists and/or
methylcarbamoyl PAF exert effects via a different pathway
than PAFR, including PAF acetylhydrolase inhibition.

Conclusion
As the first lipid autacoid receptor to be cloned, the

cloned PAFR has furnished information on the inflamma-
tory and non-inflammatory actions of PAF and the signal-
ing mechanisms of GPCRs. The accumulated information
suggests that PAFR mediates fine modifications of a vari-
ety of biological functions in co-operation with other GPCRs
such as chemokine and eicosanoid receptors.
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